3,815 research outputs found

    NMA Survey of CO and HCN Emission from Nearby Active Galaxies

    Full text link
    High resolution (a few arcseconds) observations of CO(1-0) and HCN(1-0) emission from nearby Seyfert galaxies have been conducted with the Nobeyama Millimeter Array. Based on the observed CO distributions and kinematics,we suggest that a small scale (a few 100 pc - a few kpc) distortion of the underlying potential seems to be necessary for Seyfert activity, although it is not a sufficient condition. We also find that the Toomre's Q values in the centers of Seyfert galaxies tend to be larger than unity, indicating the circumnuclear molecular gas disks around Seyfert nuclei would be gravitationally stable. The HCN/CO integrated intensity ratios (R_HCN/CO) range over an order of magnitude, from 0.086 to 0.6. The Seyfert galaxies with high R_HCN/CO may have an extended (r ~ 100 pc scale) envelope of obscuring material. The presence of kpc scale jet/ outflow might be also related to the extremely high R_HCN/CO.Comment: To appear in the Proceedings of the 3rd Cologne-Zermatt Symposium, ``The Physics and Chemistry of the Interstellar Medium'

    Dense and Warm Molecular Gas between Double Nuclei of the Luminous Infrared Galaxy NGC 6240

    Full text link
    High spatial resolution observations of the 12CO(1-0), HCN(1-0), HCO+(1-0), and 13CO(1-0) molecular lines toward the luminous infrared merger NGC 6240 have been performed using the Nobeyama Millimeter Array and the RAINBOW Interferometer. All of the observed molecular emission lines are concentrated in the region between the double nuclei of the galaxy. However, the distributions of both HCN and HCO+ emissions are more compact compared with that of 12CO, and they are not coincident with the star-forming regions. The HCN/12CO line intensity ratio is 0.25; this suggests that most of the molecular gas between the double nuclei is dense. A comparison of the observed high HCN/13CO intensity ratio, 5.9, with large velocity gradient calculations suggests that the molecular gas is dense [n(H_2)=10^{4-6} cm^-3] and warm (T_kin>50 K). The observed structure in NGC 6240 may be explained by time evolution of the molecular gas and star formation, which was induced by an almost head-on collision or very close encounter of the two galactic nuclei accompanied with the dense gas and star-forming regions.Comment: 25 pages, 8 figures, To be appeared in PASJ 57, No.4 (August 25, 2005) issu

    CO(J=6-5) Observations of the Quasar SDSS1044-0125 at z = 5.8

    Full text link
    We present a result of the quasar CO(J=6-5) observations of SDSSp J104433.04-012502.2 at z = 5.8. Ten-days observations with the Nobeyama Millimeter Array yielded an rms noise level of ~ 2.1 mJy/beam in a frequency range from 101.28 GHz to 101.99 GHz at a velocity resolution of 120 km/s. No significant clear emission line was detected in the observed field and frequency range. Three sigma upper limit on the CO(J=6-5) luminosity of the object is 2.8 x 10^10 K km/s pc^2, corresponding to a molecular gas mass of 1.2 x 10^11 Solar Mass, if a conversion factor of 4.5 Solar Mass /(K km/s pc^2) is adopted. The obtained upper limit on CO luminosity is slightly smaller than those observed in quasars at z=4-5 toward which CO emissions are detected.Comment: 4 pages, 3 figures, LaTeX2e, to appear in Publication of Astronomical Society of Japan (PASJ), Postscript file available at ftp://ftp.kusastro.kyoto-u.ac.jp/pub/iwata/preprint/sdss1044/sdss.ps.g

    Analysis of (K^-,K^+) inclusive spectrum with semiclassical distorted wave model

    Get PDF
    The inclusive K^+ momentum spectrum in the 12C(K^-,K^+) reaction is calculated by the semiclassical distorted wave (SCDW) model, including the transition to the \Xi^- bound state. The calculated spectra with the strength of the \Xi^--nucleus potential -50, -20, and +10 MeV are compared with the experimental data measured at KEK with p_{K^-}=1.65 GeV/c. The shape of the spectrum is reproduced by the calculation. Though the inclusive spectrum changes systematically depending on the potential strength, it is not possible to obtain a constraint on the potential from the present data. The calculated spectrum is found to have strong emission-angle dependence. We also investigate the incident K^- momentum dependence of the spectrum to see the effect of the Fermi motion of the target nucleons which is explicitly treated in the SCDW method.Comment: 7 pages, 5 figure

    Tracing star formation in galaxies with molecular line and continuum observations

    Get PDF
    We report our recent progress on extragalactic spectroscopic and continuum observations, including HCN(J=1-0), HCO+^+(J=1-0), and CN(N=1-0) imaging surveys of local Seyfert and starburst galaxies using the Nobeyama Millimeter Array, high-J CO observations (J=3-2 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and J=2-1 observations with the Submillimeter Array) of galaxies, and λ\lambda 1.1 mm continuum observations of high-z violent starburst galaxies using the bolometer camera AzTEC mounted on ASTE.Comment: 6 pages, 5 figures, To appear in proceedings of "Far-Infrared and Submillimeter Emission of the Interstellar Medium", EAS Publication Series, Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simon. See http://www.nro.nao.ac.jp/~f0212kk/FIR07/kk-ver20.pdf for a version with high resolution figure

    Addendum: Triton and hypertriton binding energies calculated from SU_6 quark-model baryon-baryon interactions

    Full text link
    Previously we calculated the binding energies of the triton and hypertriton, using an SU_6 quark-model interaction derived from a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction, which is now energy independent and reserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that about 350 keV is left for the energy which is to be accounted for by three-body forces.Comment: 4 pages, 1 figur

    Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei

    Full text link
    The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) using the spin-flavor SU_6 quark-model wave functions and effective meson-exchange potentials at the quark level. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon scattering. Due to the several improvements including the introduction of vector-meson exchange potentials, fss2 has achieved very accurate description of the NN and YN interactions, comparable to various one-boson exchange potentials. We review the essential features of fss2 and our previous model FSS, and their predictions to few-body systems in confrontation with the available experimental data. Some characteristic features of the B_8 B_8 interactions with the higher strangeness, S=-2, -3, -4, predicted by fss2 are discussed. These quark-model interactions are now applied to realistic calculations of few-body systems in a new three-cluster Faddeev formalism which uses two-cluster RGM kernels. As for the few-body systems, we discuss the three-nucleon bound states, the Lambda NN-Sigma NN system for the hypertriton, the alpha alpha Lambda system for 9Be Lambda, and the Lambda Lambda alpha system for 6He Lambda Lambda.Comment: 20 pages, 12 figures, 18th Nishinomiya Yukawa Memorial Symposium on Strangeness in Nuclear Matter, 4 - 5 December 2003, Nishinomiya, Japan. (to be published in Prog. Theor. Phys. Suppl.

    Three-Cluster Equation Using Two-Cluster RGM Kernel

    Full text link
    We propose a new type of three-cluster equation which uses two-cluster resonating-group-method (RGM) kernels. In this equation, the orthogonality of the total wave-function to two-cluster Pauli-forbidden states is essential to eliminate redundant components admixed in the three-cluster systems. The explicit energy-dependence inherent in the exchange RGM kernel is self-consistently determined. For bound-state problems, this equation is straightforwardly transformed to the Faddeev equation which uses a modified singularity-free T-matrix constructed from the two-cluster RGM kernel. The approximation of the present three-cluster formalism can be examined with more complete calculation using the three-cluster RGM. As a simple example, we discuss three di-neutron (3d') and 3 alpha systems in the harmonic-oscillator variational calculation. The result of the Faddeev calculation is also presented for the 3' system.Comment: 12 pages, no figur
    • …
    corecore